The synthesis of the elements in stars depends on our ability to accurately measure nuclear reaction cross sections in the laboratory. For over a decade, the NCSU nuclear physics group has been leading an effort to quantify the astrophysical uncertainties that arise from those measurements. In our latest development, we investigated ways to include systematic energy errors in the calculations. The paper detailing these calculations was recently published in Astronomy and Astrophysics here.
Figure showing the effect of correlated and anti-correlated resonance energies on the calculated rate of a nuclear reaction. On the left, correlated energies create a net increase in the rate (solid black curve), while for anti-correlated energies the effect is cancelled out.